
Getting Started with Erlang

version 5.3

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 Getting Started with Erlang 1

1.1 Getting Started with Erlang . 1

1.1.1 Introduction . 1

1.1.2 Working with Erlang . 2

1.1.3 The Erlang Shell . 5

1.1.4 Compiling . 14

1.1.5 Debugging with Pman . 16

1.1.6 Distributed Erlang . 19

1.1.7 Configuration . 22

List of Figures 25

List of Tables 27

Bibliography 29

iiiGetting Started with Erlang

iv Getting Started with Erlang

Chapter 1

Getting Started with Erlang

1.1 Getting Started with Erlang

1.1.1 Introduction

This chapter describes the most common tasks users perform in Erlang/OTP and is intended for readers
who are running Erlang/OTP for the first time. It also contains references to more detailed information.

This manual assumes that you have another source of information about how the language Erlang
works. The first chapter of the book Concurrent Programming in ERLANG, [Concurrent Programming
in ERLANG [1]], is available online in PDF1 format.

This manual will describe how to

� compile and run Erlang programs

� work with the Erlang shell, this is the most central part of the development environment

� use the basic tools, Debugger and Pman

This manual will also describe differences in development environment on the Unix and Windows
platforms.

Manual conventions

The following conventions are used to describe commands, which are entered from the keyboard in the
Erlang shell, or on the Emacs command line: window-based

� to enter the command C-c: Press the Control key and the letter c simultaneously. C-c is equivalent
to ^c.

� to enter the command M-f : Press and release the Esc key, then press the letter f .

� to enter the command halt(). Enter halt(). and then press the Return key. You must include the
full stop that terminates the command.

� the Unix prompt is >.

� the DOS prompt is C:\>

1URL: http://www.erlang.org/download/erlang-book-part1.pdf

1Getting Started with Erlang

Chapter 1: Getting Started with Erlang

1.1.2 Working with Erlang

Erlang programs are executed when you instruct the Erlang Runtime System (ERTS) to execute your
code. They do not run as binary programs, which can be executed directly by your computer. ERTS
consists of an Erlang evaluator and some libraries. The Erlang evaluator is often referred to as an
emulator and is very similar to the Java virtual machine.

ERTS together with a number of ready-to-use components and a set of design principles forms the
Open Telecom Platform, normally called OTP or Erlang/OTP.

The most central part of the Erlang/OTP development environment is the Erlang shell, erl. erl is
available on Unix systems, Windows NT and Windows 95. It looks very similar to a Unix shell,
Windows DOS box or a Windows NT Command box. The difference is that the Erlang shell
understands how to

� compile and load Erlang programs

� run Erlang programs, individual functions or evaluate Erlang expressions

� monitor and control execution of the programs

� command line editing

� history list with previously entered commands

In addition to this text-based interface there are several window-based tools like Debugger, Pman and
TV.

You can access everything from this command interface but you can also activate the graphic Toolbar
where you get buttons to start the window based tools.

Running Erlang/OTP

To start Erlang/OTP on a Unix system you execute in a Unix shell

> erl -s toolbar

On the Windows platform you should find Erlang/OTP in the start menu, use the entry Erlang with
Toolbar. If the Erlang/OTP executable is in your execution path you can also start Erlang/OTP from a
DOS box or NT command line with

C:\> werl -s toolbar

Note:
On the Windows platform there are two executables, erl and werl. You normally use werl, see the
werl reference manual for details.

The following apears on the screen:

2 Getting Started with Erlang

1.1: Getting Started with Erlang

Erlang (BEAM) emulator version 5.3 [hipe] [threads:0]

Eshell V5.3 (abort with ^G)
1>

The Erlang shell is now ready for you to type some input. The commands you enter could be any
Erlang expression, which is understood by an Erlang shell.

Try it out by typing 1 + 2. followed by pressing the return key (don’t forget the terminating dot). You
can also call one of the built-in functions, type date().. The result from what you entered should make
it look like

Erlang (BEAM) emulator version 5.3 [hipe] [threads:0]

Eshell V5.3 (abort with ^G)
1> 1 + 2.
3
2> date().
f2003,2,11g

The example above can be regarded as having a dialog with the runtime system. You can also run
functions or programs, send messages or monitor processes.

To stop Erlang/OTP, enter one of the following commands in the window where Erlang/OTP was
started:

1. Enter the command C-c (press the Control key and the letter c simultaneously).
This command puts Erlang/OTP into BREAK mode, and the system responds as follows:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

Enter a and then press the Return key to abort Erlang/OTP.

2. Enter the command halt(). and then press the Return key.

3. Enter the command C-g and then press the Return key. This command returns with –>
press q to quit and then press the Return key to abort Erlang/OTP.

Starting Tools

You can start various tools from the toolbar

Figure 1.1: The Toolbar

3Getting Started with Erlang

Chapter 1: Getting Started with Erlang

Compiling a File

This section describes how to compile and run a simple Erlang program, using the Erlang shell. It is
assumed that the following program, which calculates the factorial of an integer, has been created with
an external editor and saved with the file name math1.erl.

Make sure that you are in the directory, where the program file is stored. Use the command pwd(). to
check this and, if needed, change directory by using the command cd(Dir)..

-module(math1).
-export([factorial/1]).
factorial(0) -> 1;
factorial(N) -> N * factorial(N-1).

Follow these steps to compile the program:

1. Enter the command c(math1)..

1> c(math1).
fok,math1g
2>

2. The system returns fok, math1g if the compilation was successful. If unsuccessful, the compiler
prints an error message in the following format:

math1.erl: line number: error message

Refer to the section Compiling [page 14] in this chapter for more information about compiling code.

Evaluating an Expression

When a module has been successfully compiled, the exported functions in the module can be evaluated
by entering the expression at the Erlang shell prompt, followed by a full stop and a carriage return.

The following example illustrates an evaluation, using the math1.erl program:

� Enter the following expression at the command prompt:

math1:factorial(45).

� Erlang evaluates the expression and prints the result. The result from the expression entered looks
as follows:

2> math1:factorial(45).
119622220865480194561963161495657715064383733760000000000
3>

Note:
All Erlang expressions must end with a full stop.

4 Getting Started with Erlang

1.1: Getting Started with Erlang

Aborting Evaluation of an Expression

Enter C-c. to abort an evaluation (press the Control key and the letter c simultaneously). This action will
also terminate an infinite loop.

How to get help

The Erlang language itself is described in the book Concurrent Programming in ERLANG , which is
available online in PDF2 format.

The complete documentation is part of the release in HTML format. The top of the documentation
tree is located in the doc directory of the Erlang/OTP installation. It is also available on-line 3.

From an Unix shell you can access the manual pages for the Erlang/OTP libraries. As an example to
display the manual page for the module titled lists you enter

% erl -man lists

You can list the shell commands from the Erlang shell if you enter

1> help().

There is lots of information at the commercial Erlang/OTP site http://www.erlang.se/4. and the
OpenSource Erlang/OTP site http://www.erlang.org/5.

1.1.3 The Erlang Shell

The Erlang Shell is a program, which provides a front-end to the Erlang evaluator. Edit commands, shell
internal commands, and Erlang expressions, which are entered in the shell window, are interpreted by
the Erlang evaluator.

In the shell it is possible to:

� evaluate expressions

� recall previous expressions

� create or destroy variable bindings

� manipulate concurrent jobs.

Depending on your preferred working environment, start Erlang/OTP in one of the following ways:

� On a Unix system you enter the command erl at the operating system prompt. This command
starts the Erlang runtime system and the Erlang shell.

� On the Windows platform you normally start Erlang/OTP from the start menu. You can also
enter the command erl or werl from a DOS box or Command box. Note that starting with erl
will give you a more primitive Erlang shell than if you start with werl, see the werl reference
manual for details.

2URL: http://www.erlang.org/download/erlang-book-part1.pdf
3URL: http://www.erlang.org/doc/current/doc/
4URL: http://www.erlang.se/
5URL: http://www.erlang.org/

5Getting Started with Erlang

Chapter 1: Getting Started with Erlang

Figure 1.2: Erlang/OTP menu on Windows

Apart from evaluation commands and expression, the shell has the following properties:

� Bindings made to variables are remembered.

� Changes made to the local process dictionary (get and put) are remembered.

� New bindings and changes to the local process dictionary are lost if an expression is entered and
its evaluation fails. In this case, the old values are restored.

� Jobs can be manipulated in the shell. A job can be thought of as a set of processes, which can
communicate with the shell.

The shell can run in two separate modes:

� Normal mode, in which commands can be edited and expressions evaluated

� Job control mode (JCL), in which jobs can be started, stopped, detached or connected. Only the
current job can communicate with the shell.

Editing Commands

The editing commands are a sub-set of the Emacs line editing commands. These commands are listed in
the following table.

Key Sequence Function

C-a Beginning of line

C-b Backward character

M-b Backward word

C-d Delete character

continued ...

6 Getting Started with Erlang

1.1: Getting Started with Erlang

... continued

M-d Delete word

C-e End of line

C-f Forward character

M-f Forward word

C-g Enter shell break mode

C-k Kill line

C-l Redraw line

C-n Fetch next line from the history buffer

C-p Fetch previous line from the history buffer

C-t Transpose characters

M-t Transpose words

C-y Insert previously killed text

Table 1.1: Text Editing

Note:
The notation C-a means pressing the control key and the letter a simultaneously. M-f means pressing
the ESC key followed by the letter f .

The Esc key is also called the Meta key in the Unix environment.

The Tab can be used for completion of module and function names.

Shell Internal Commands

The shell has a number of built-in internal commands. The command help() displays the following
commands:

1> help().
** shell internal commands **
b() -- display all variable bindings
e(N) -- repeat the expression in query <N>
f() -- forget all variable bindings
h() -- history
history(N) -- set how many old previous commands to keep
results(N) -- set how many previous command results to keep
v(N) -- use the value of query <N>
** commands in module c **
bt(Pid) -- stack backtrace for a process
c(File) -- compile and load code in <File>
cd(Dir) -- cd Dir .. example cd("..")
flush() -- flush any messages sent to the shell
help() -- help info
i() -- information about the system
ni() -- information about the networked system
i(X,Y,X) -- information about pid <X,Y,Z>

7Getting Started with Erlang

Chapter 1: Getting Started with Erlang

l(File) -- Load module in <File>
lc([File]) -- Compile a list of Erlang modules
ls() -- list files in the current directory
ls(Dir) -- list files in directory <Dir>
m() -- which modules are loaded
m(Mod) -- information about module <Mod>
memory() -- memory allocation information
memory(T) -- memory allocation information of type <T>
nc(File) -- compile and load code in <File> on all nodes
nl(File) -- Load module in <File> on all nodes
pid(X,Y,Z) -- convert X,Y,Z to a Pid
pwd() -- print working directory
regs() -- information about registered processes
nregs() -- information about all registered processes
xm(M) -- cross reference check a module
zi() -- information about the system, including zombies
** commands in module i (interpreter interface) **
ih() -- print help for the i module
true
2>

When an expression with the format Func(Arg1,Arg2,...,ArgN) is entered, the shell has to determine
what Func refers to before the expression can be evaluated. It interprets Func in the following order of
priority:

1. Func refers to a functional object (Fun)

2. Func refers to a built-in function (BIF)

3. user default:Func in the module user default

4. shell default:Func in the module shell default

Example Dialogue with the Shell

The following is an extended dialogue with the shell. Detailed explanations of the individual
commands are included.

host prompt> erl
Erlang (BEAM) emulator version 5.3 [hipe] [threads:0]

Eshell V5.3 (abort with ^G)
1> Str = "abcd".
"abcd"

Command 1 sets the variable Str to the string "abcd". Remember that "..." is the shorthand for the
list of ASCII integers which represents the string.

2> L = length(Str).
4

8 Getting Started with Erlang

1.1: Getting Started with Erlang

Command 2 matches the pattern L against the return value of length(Str). Since L is unbound the
match succeeds and L is bound to 4.

3> Descriptor = fL, list to atom(Str)g.
f4,abcdg

Command 3 binds the value of variable Descriptor to the tuple f4,abcdg.

4> L.
4

Command 4 prints the value of the variable L.

5> b().
Descriptor = f4,abcdg
L = 4
Str = "abcd"
ok

Command 5 evaluates the shell internal command b() (short for bindings). This prints a list of the
current shell variables and their bindings.

6> f(L).
ok

Command 6 evaluates the shell internal command f(L) (short for forget) which forgets the value of the
variable L .

7> b().
Descriptor = f4,abcdg
Str = "abcd"
ok

Command 7 returns a list of the current variable bindings. The variable L has been forgotten.

8> fL, g = Descriptor.
f4,abcdg

Command 8 performs a pattern matching operation on Descriptor, binding a new value to L.

9> L.
4

Command 9 evaluates L and prints its value.

9Getting Started with Erlang

Chapter 1: Getting Started with Erlang

10> fP, Q, Rg = Descriptor.
** exited: ffbadmatch,f4,abcdg,ferl eval,expr,3gg **

Command 10 tries to match fP, Q, Rg against Descriptor which is f4, abcg. The match fails and
none of the new variables are bound. "** exited: badmatch **" is printed. This is not
the value of the expression, and the expression has no value since its evaluation failed. It is a warning
printed by the system to inform you that an error has occurred. The information printed after the word
badmatch indicates which term was being matched, and in which function the error occurred. The
values of all other variables, such as L and Str are unchanged.

11> P.
** 1: variable ’P’ is unbound **

12> Descriptor.
f4,abcdg

Commands 11 and 12 show that P is unbound, as the previous command failed, and Descriptor has
not changed.

13> fP, Qg = Descriptor.
f4,abcdg

14> P.
4

Commands 13 and 14 show successful matches, in which P and Q are bound.

15> f().
ok.

Command 15 clears all bindings.

For the next commands we use the module test1 defined in the following way:

-module (test1).
-export ([demo/1]).
demo(X) ->
put(aa, worked),
X = 1,
X + 10.

Compile it with c(test1). and continue with command 16

10 Getting Started with Erlang

1.1: Getting Started with Erlang

16> put(aa, hello).
undefined
17> get(aa).
hello

Commands 16 and 17 set and inspect the value of the item aa in the process dictionary.

18> Y = test1:demo(1).
11
19> get().
[faa, workedg]

Command 18 evaluates test1:demo(1), the evaluation succeeds and the changes made in the process
dictionary become visible to the shell. The new value of the dictionary item aa can be seen in command
19.

20> put(aa, hello).
worked
21> Z = test1:demo(2).

=ERROR REPORT==== 19-Feb-2003::10:28:15 ===
Error in process <0.39.0> with exit value: ffbadmatch,1g,[ftest1,demo,1g,
ferl eval,expr,4g,fshell,eval loop,2g]g
** exited: ffbadmatch,1g,

[ftest1,demo,1g,ferl eval,expr,4g,fshell,eval loop,2g]g **

Commands 20 and 21 reset the value of the dictionary item aa to hello and calls test1:demo(2). The
evaluation fails, and the changes made to the dictionary in test1:demo(2) before the error occurred are
discarded.

22> Z.
** 1: variable ’Z’ is unbound **
23> get(aa).
hello

Commands 22 and 23 show that Z was not bound and that the dictionary item aa retained its original
value.

24> erase(), put(aa, hello).
undefined.
25> spawn(test1, demo, [1]).
<0.58.0>
26> get(aa).
hello

Commands 24, 25, and 26 show the effect of evaluating test1:demo(1) in the background. In this case
the expression is evaluated in a newly spawned evaluator and any changes made in the process
dictionary are local to the newly spawned process and therefore not visible to the shell.

11Getting Started with Erlang

Chapter 1: Getting Started with Erlang

27> io:format("hello hello\n").
hello hello
ok
28> e(27).
hello hello
ok
29> v(27).
ok

Commands 27, 28, and 29 use the history facilities of the shell. Command 28 is e(27), which
re-evaluates command 27. Command 29 is v(27) which uses the value (result) of command 27. In the
case of a ‘pure’ function, i.e. a function with no side effects, the result is the same. For a function with
side effects the result can be different.

In the next command we use the module test2 defined in the following way:

-module (test2).
-export ([loop/1]).

loop(N) ->
io:format(’Hello Number:~w\n’, [N]),
loop(N+1).

Compile it with c(test2). and continue with command 30.

30> test2:loop(0).
Hello Number:1
Hello Number:2
Hello Number:3
Hello Number:4
Hello Number:5
User switch command
-->

Command 30 evaluates test2:loop(0), which puts the system into an infinite loop. The user typed
Control G. This suspends output from the current process, which is in a loop, and enters JCL mode
[page 12]. In JCL mode you can start and stop jobs.

Type q to exit the Erlang shell, then open a new shell and test following commands:

1> F = fun(X) -> 2*X end.
#Fun<erl eval.6.61343866>
2> F(2).
4

Command 1 binds the variable F to a fun, and command 2 evaluates the expression F(2).

12 Getting Started with Erlang

1.1: Getting Started with Erlang

Advanced Shell Usage - Job Control Mode

When the shell starts, it starts a single evaluator process. This process, together with any local processes,
which it spawns, is referred to as a job. Only the current job, which is said to be connected, can perform
operations using standard I/O. All other jobs, which are said to be detached, will be blocked if they
attempt to use standard I/O. Jobs which do not use standard I/O run in the normal way.

Typing Control G detaches the current job, and the shell enters into JCL mode. The prompt changes
and looks as follows:

-->

Typing ? at the prompt gives the following help message:

--> ?
c [nn] - connect to the current job
i [nn] - interrupt job
k [nn] - kill job
j - list all jobs
s - start new job
r [node] - start a remote shell
q - quit erlang
? | h - help

The JCL commands have the following meaning.

Command Function

c Connect to the current job. The standard shell will be resumed. Operations, which
use standard I/O, will be interleaved with user inputs to the shell.

c [nn] As above, but only for job number nn.

i Interrupt the current job.

i [nn] Interrupt job number [nn].

k Kill the current job. All spawned processes in the job will be killed provided they
have not evaluated the group leader/2 primitive, and provided they are located on
the local machine. Processes spawned on remote nodes will not be killed.

k [nn] As above but specifically only for job number nn.

j List all jobs. A list of all known jobs is printed. The current job name is prefixed with
‘*’.

s Start a new job. This will be assigned a new index [nn], which can be used for
referencing.

r [node] Start a remote job on node. This is used in distributed Erlang to allow a shell running
on one node to control a number of applications running on a network of nodes.

q Quit Erlang/OTP.

? | h Help.

Table 1.2: The JCL Commands

13Getting Started with Erlang

Chapter 1: Getting Started with Erlang

1.1.4 Compiling

A file is compiled by evaluating the function

compile:file(File, Options).

File is a file name, and Options is a list of compiler options. Refer to the Reference Manual for a
complete list of Options.

You can also enter the command c(File) from the Erlang shell. This command assumes that the
following conditions apply:

1. The module name is the same as the file name, minus the .erl extension.

2. Code is to be loaded immediately if the compilation succeeds.

The function make:all() can be used to compile many files. All files must be located in the same
directory. Refer to the Reference Manual, function make(3) for full details.

Compiler Diagnostics

The Erlang compiler detects a number of different errors. These can be:

� syntax errors

� variable errors

� missing function errors.

The compiler also warns about potential errors.

Syntax Errors Syntax errors are reported against syntactically incorrect Erlang code. For example, the
following code fragment is incorrect and will be reported by the compiler as shown:

test(X, Y) ->
case g(X) o

Y -> 1;
2 -> 2

end.

The syntax word of in the case construction is incorrectly spelt. This produces the compiler diagnostic:

test1.erl: 10 : of expected before ‘o’

This means that an error occurred in line 10 of the file test1.erl. The message, which follows the line
number, describes the error.

14 Getting Started with Erlang

1.1: Getting Started with Erlang

Variable Errors Two types of variable errors can be detected by the compiler. Variables can be
undefined, or unsafe. In the following example, the variables Y and Z are undefined:

test(X) ->
A = f(X, Y, Z),
b(A, X).

When compiled, the following error messages are printed:

./test.erl:11: variable ’Y’ is unbound

./test.erl:11: variable ’Z’ is unbound

The reason for these errors are that the variables Y and Z are undefined.

The following example shows the use of unsafe variables:

test1(X) ->
case f(X) of

true -> Y = 1, Z = 2;
false -> Y = 2

end,
g(Y, Z).

In this example, there are two possible execution paths in the case statement. In one case the variables
Y and Z are bound, in the other case only the variable Y is bound. After the case statement, we can only
be certain that Y is bound and the variable Z is said to be unsafe. Any subsequent use of Z will result in
an unsafe variable error message. In this case the following compiler error is generated:

./test1.erl:9: variable ’Z’ is unsafe

If no reference to Z is made after the case statement, the function is correct, as the following example
shows:

test2(X) ->
case f(X) of

true -> Y = 1, Z = 2;
false -> Y = 2

end,
g(Y).

For both test1 and test2 above, the compiler will issue a warning:

./test1.erl:9: Warning: variable ’Y’ exported from [’case’]

To avoid this warning and lessen the risk for unsafe variables, write the code like this instead:

test3(X) ->
Y = case f(X) of

true -> 1;
false -> 2

end,
g(Y).

15Getting Started with Erlang

Chapter 1: Getting Started with Erlang

Missing Functions The following module contains a missing function:

-module(test).
-export([test/1]).
test(X) -> test_1(X, abc).

When the module is compiled, it results in the following:

> c(test).
./test.erl:3: function test_1/2 undefined
error

1.1.5 Debugging with Pman

The process manager, Pman, is a tool which traces the evaluation of code. It can trace several different
processes, and several different nodes if distributed Erlang is used. Pman is controlled through a simple
graphical user interface.

Start Pman as follows:

� run the function pman:start() from the Erlang shell, or

� push the pman button on the toolbar.

The following window is displayed when starting the Pman:

Figure 1.3: The Pman Window

This section describes a simple debugging example, which involves tracing the code in a single process.

For a more detailed description of Pman see the Pman User’s Guide.

16 Getting Started with Erlang

1.1: Getting Started with Erlang

Example

We illustrate the use by tracing the evaluation of the function ping pong:ping, which is defined as
follows:

-module(ping_pong).
-export([ping/0, pong/0]).

ping() ->
Pong = spawn(ping_pong, pong, []),
Pong ! {self(), ping},
receive

pong ->
pong

end.

pong() ->
receive

{Ping, ping} ->
Ping ! pong

end.

Follow these steps to trace this process:

1. Compile the module.

2. Select the Shell Process item in the Trace menu of the Pman main window. The window shown in
The Shell Tracer Window [page 18] is displayed.

3. From the shell tracer window select the Options... item in the File menu. Make sure the Trace send
and Trace receive check boxes are selected and click OK.

4. Evaluate the function ping pong:ping().

2> ping pong:ping().
pong.

5. The contents of the shell trace window changes to show a listing of the called functions. See Trace
of the function ping pong:ping() [page 18].

17Getting Started with Erlang

Chapter 1: Getting Started with Erlang

Figure 1.4: The Shell Tracer Window

Figure 1.5: Trace of the function ping pong:ping()

18 Getting Started with Erlang

1.1: Getting Started with Erlang

1.1.6 Distributed Erlang

Erlang can be used to write distributed applications, which run simultaneously on several computers.
Programming distributed systems with Erlang is the subject of the book Concurrent Programming in
ERLANG .

Nodes

A node is a basic concept of distributed Erlang. In a distributed Erlang system, the term node means an
executing Erlang runtime system, which can communicate with other Erlang runtime systems. Each
node has a name assigned to it, which is returned by the built-in function node(). This name is an
atom and is guaranteed to be globally unique. The format of the name can vary between different
implementations of Erlang, but it is always an atom which consists of two parts separated by an @
character. The following is an example of a node name:

dilbert@super.du.ericsson.se

Before we can fully account for the structure of a node name, we have to consider how host names are
specified.

Host Names Every host, which is attached to a network, has an IP address. However, it is not
practical to use IP addresses when referring to hosts, since they are made up of numeric strings, which
are difficult to remember. For this reason, hosts are usually given names.

Host names of hosts, which are connected to the Internet, are organized into domains. Domains are
built hierarchically, with “top level” domains and “sub-domains”. For example, the domain denoted by
du.etx.ericsson.se is a sub-domain, which is part of another sub-domain etx.ericsson.se, which is part of
the top domain se.

When it is clear from the context what domain a host belongs to, it is not necessary to use the fully
qualified host name. In the example super.du.ext.ericsson.se, the first part “super” will suffice. We refer
to “super” as the short host name of the host.

Hosts which are not connected to the Internet, and do not belong to any particular domain, are simply
referred to by their short host name, “super” for example.

We use the term host name to denote the name of hosts. It should be clear from the context if we mean
the long or the short form of the name.

Node Names An Erlang node name is an atom constructed as the concatenation of a name supplied
by the user, the @ character, and the name of the host where the Erlang runtime system is executed.
For example:

dilbert@super.du.etx.ericsson.se

In this example, “dilbert” is the name of the Erlang node, and “super.du.etx.ericsson.se” is the name of
the host where Erlang is running.

Distributed Erlang requires host names to be unique, since Erlang nodes identify each other by node
names. We can achieve uniqueness for host names either by using long host names, or using short host
names with the additional requirement that communicating hosts belong to the same domain (or a
network not connected to Internet).

When using long host names, the corresponding node names are called long node names. For example:

19Getting Started with Erlang

Chapter 1: Getting Started with Erlang

dilbert@super.du.etx.ericsson.se

In this case, distributed Erlang is started with the -name flag. The system checks that the host name part
of the node name contains at least one dot (.). If not, the host name is considered to be in error.

Similarly, when using short host names, the corresponding node names are called short node names. For
example:

dilbert@super

In this case, distributed Erlang is started with the -sname flag.

Note:
An Erlang started with a long node name cannot communicate with a node started with a short node
name.

It is often clear from the context if a node name is long or short. When this is the case, we use the term
node name to refer to a node (the name of which may be short or long).

The first part of a node name which comes before the @ character is the plain name of the node. The
plain name for a node is unique within the host on which the node is running. When starting
distributed Erlang, with either the -name or the -sname flag, the plain name of the node is provided by
the user. The other part of the node name, which is the host name part, is added by the Erlang runtime
system at start-up.

Start-Up

Execute the following command to start a distributed Erlang node:

% erl -name foobar
Erlang (BEAM) emulator version 5.3 [hipe] [threads:0]

Eshell V5.3 (abort with ^G)
(foobar@super.eua.ericsson.se)1>

The node name shown in the system response, includes the long name for the host. An alternative way
is to start the system with the -sname flag. This is sometimes the only way to run distributed Erlang if
the Domain Name System (DNS) is not running, or is not available.

20 Getting Started with Erlang

1.1: Getting Started with Erlang

Distribution Script Flags

The executable script erl starts the Erlang runtime system. Refer to erl(1), for a complete list of the
flags, which can be added to the start script. This section describes some of the flags, which control the
distribution:

� -name Name
This flag makes the node into a distributed node. It invokes all network servers which are needed
to make a node a distributed node. Refer to net kernel(3) for full details. The name of the node
will be Name@Host, where Host is the fully qualified host name of the current host. This option
will also ensure that the Erlang port mapper daemon (epmd) runs on the current host before
Erlang is started. Refer to epmd(3).

� -sname Name
This flag is the same as the-name flag, except for the host name used. The name of the node will
be Name@Host, where Host is the short host name of the current host. If the Domain Name
System (DNS) is not running, this is sometimes the only way to run distributed Erlang. The
-sname flag cannot communicate with systems running with the -name flag, since node names
must be unique in distributed Erlang.

� -setcookie Cookie
This flag sets the magic cookie of the current node to Cookie. Since erlang:set cookie(node(),
Cookie) is used, all other nodes are assumed to have their cookies set to Cookie as well. This way
several nodes can share a common magic cookie (see the next section Security [page 21]).

� -connect all false
This flag causes the node connection graph to become ‘leaner’. Only direct connections are
established.

Security

Erlang nodes are protected by a magic cookie system. Refer to auth(3) for detailed information about
the magic cookie system.

1. When a message is sent from one node to another node, the sending node attaches the magic
cookie of the receiving node to the message.

2. The runtime system on the receiving node verifies that the magic cookie is the correct one for this
node.

3. If the magic cookie is correct, the message is accepted. If the magic cookie is not correct, then the
message is handled as follows:

� The message is transformed into a “badcookie” message.

� The “badcookie” message is sent to the system process net kernel.

� By default, the net kernel passes the message to the registered process auth.

� The auth process is then responsible for taking appropriate action for the unauthorized
message. In the standard system, the default action is to shut down the connection to the
sending node.

Magic cookies are assigned to a node as follows:

1. Initially, each node is assigned a random atom as its magic cookie, and each node assumes the
atom nocookie for all other nodes.

2. When the standard auth server is started without the -setcookie flag, it reads a file named
$HOME/.erlang.cookie. If the file $HOME/.erlang.cookie does not exist, it is created with a
random string as its content. The permission mode of the file is set to read-only by owner.

21Getting Started with Erlang

Chapter 1: Getting Started with Erlang

3. The system creates an atom from the contents of this file and the function
erlang:set cookie(node(), CookieAtom) sets the magic cookie for the node to the value of
this atom.

An Erlang node is completely unprotected when running erlang:set cookie(node(), nocookie).
This can sometimes be appropriate for systems that are not normally networked, or for systems which
are run for maintenance purposes only. Refer to auth(3) for details on the security system.

Slave Nodes

The Erlang/OTP library module slave provides functionality to start or control slave nodes. This
functionality is Unix specific.

The remote nodes are started by means of the Unix command rsh. However, to use this command, the
user must not only use a Unix system, but must also be allowed to rsh to the remote hosts without
being prompted for a password.

Refer to the following manuals for additional information:

� The Unix documentation set, rsh(1)

� slave(3).

1.1.7 Configuration

The standard Erlang/OTP system can be re-configured to change the default behavior on start-up.

The .erlang Start-up File

When Erlang/OTP is started, the system searches for a file named .erlang in the directory where
Erlang/OTP is started. If not found, the user’s home directory is searched for an .erlang file.

If an .erlang file is found, it is assumed to contain valid Erlang expressions. These expressions are
evaluated as if they were input to the shell.

A typical .erlang file contains a set of search paths, for example:

io:format("executing user profile in HOME/.erlang\n",[]).
code:add_path("/home/calvin/test/ebin").
code:add_path("/home/hobbes/bigappl-1.2/ebin").
io:format(".erlang rc finished\n",[]).

user default and shell default

Functions in the shell which are not prefixed by a module name are assumed to be functional objects
(Funs), built-in functions (BIFs), or belong to the module user default or shell default.

To include private shell commands, define them in a module user default and add the following
argument as the first line in the .erlang file.

code:load_abs("..../user_default").

22 Getting Started with Erlang

1.1: Getting Started with Erlang

erl

If the contents of .erlang are changed and a private version of user default is defined, it is possible to
customize the Erlang/OTP environment. More powerful changes can be made by supplying command
line arguments in the start-up script erl. Refer to erl(1) and init(3) for further information.

23Getting Started with Erlang

Chapter 1: Getting Started with Erlang

24 Getting Started with Erlang

List of Figures

1.1 The Toolbar . 3

1.2 Erlang/OTP menu on Windows . 6

1.3 The Pman Window . 16

1.4 The Shell Tracer Window . 18

1.5 Trace of the function ping pong:ping() . 18

25Getting Started with Erlang

List of Figures

26 Getting Started with Erlang

List of Tables

1.1 Text Editing . 7

1.2 The JCL Commands . 13

27Getting Started with Erlang

List of Tables

28 Getting Started with Erlang

Bibliography

[1] J. Armstrong, R. Virding, C. Wikstrom, M. Williams, Concurrent Programming in ERLANG,
Prentice Hall, 1996, ISBN 0-13-508301-X.

29Getting Started with Erlang

